

These complete notes have been made for class 12th board computer science exam.

Stack Introduction
A stack is a linear data structure that follows the Last In, First Out (LIFO) principle. It means the element that is added last is removed
first.
Key Features of a Stack:

• Operates like a stack of plates—you can only remove the top plate first.
• Uses two main operations:

o Push → Add an element to the top.
o Pop → Remove an element from the top.

• Used in applications such as:
o Function call management (Recursive calls).
o Expression evaluation (Postfix, Infix, Prefix).
o Undo/Redo operations in applications.
o Backtracking in algorithms (like the Knight’s Tour problem).

Stack Operations
1. Push Operation (Insertion)

• Adds an element to the top of the stack.
• If the stack is full (in a fixed-size stack), it leads to a Stack Overflow error.
• Algorithm:

1. Check if the stack is full.
2. If not, increment the top index.
3. Insert the new element at the new top position.

2. Pop Operation (Deletion)
• Removes the top element from the stack.
• If the stack is empty, it results in a Stack Underflow error.
• Algorithm:

1. Check if the stack is empty.
2. If not, remove the top element.
3. Decrement the top index.

3. Peek Operation
• Returns the top element of the stack without removing it.

4. isEmpty Operation
• Checks whether the stack is empty.

5. isFull Operation
• Checks whether the stack is full (in case of a fixed-size array implementation).

Stack Implementation in Python
A stack can be implemented using lists or the collections.deque module.
1. Using Lists
class Stack:

 def __init__(self):
 self.stack = []

 def push(self, item):
 self.stack.append(item)

 def pop(self):
 if not self.is_empty():
 return self.stack.pop()
 return "Stack Underflow"

 def peek(self):
 if not self.is_empty():
 return self.stack[-1]
 return None

 def is_empty(self):
 return len(self.stack) == 0

Example Usage
s = Stack()
s.push(10)
s.push(20)
print(s.pop()) # Output: 20
print(s.peek()) # Output: 10
2. Using collections.deque
from collections import deque

stack = deque()
stack.append(10)
stack.append(20)
print(stack.pop()) # Output: 20
print(stack[-1]) # Output: 10

Notations for Arithmetic Expressions
An arithmetic expression can be written in three notations:

1. Infix Notation: Operators are written between operands (e.g., A + B).
2. Prefix Notation (Polish Notation): Operators are written before operands (e.g., + A B).
3. Postfix Notation (Reverse Polish Notation, RPN): Operators are written after operands (e.g., A B +).

Expression Type Example (A + B * C)
Infix A + B * C
Prefix + A * B C
Postfix A B C * +

Conversion from Infix to Postfix Notation
Rules for Conversion

1. Operands (A, B, C, etc.) are written as they appear.
2. Operators are rearranged based on precedence.

o * and / have higher precedence than + and -.
3. Parentheses dictate priority.

Algorithm
1. Initialize an empty stack for operators.
2. Scan the infix expression from left to right.
3. If the character is an operand, add it to the output.
4. If the character is an operator, push it onto the stack.
5. If the character is '(', push it onto the stack.
6. If the character is ')', pop from the stack until '(' is found.
7. Pop remaining operators in the stack.

Example
Infix: (A + B) * C
Postfix: A B + C *
Python Program
def precedence(op):
 if op in ('+', '-'):
 return 1
 if op in ('*', '/'):
 return 2
 return 0

def infix_to_postfix(expression):
 stack = []
 result = ""

 for char in expression:
 if char.isalnum():
 result += char
 elif char == '(':
 stack.append(char)
 elif char == ')':
 while stack and stack[-1] != '(':
 result += stack.pop()
 stack.pop()
 else:
 while stack and precedence(stack[-1]) >= precedence(char):
 result += stack.pop()
 stack.append(char)

 while stack:
 result += stack.pop()

 return result

expr = "(A+B)*C"
print(infix_to_postfix(expr)) # Output: AB+C*

Evaluation of Postfix Expression
A postfix expression is evaluated using a stack:

1. Scan from left to right.
2. If the element is an operand, push it to the stack.
3. If the element is an operator, pop two elements from the stack, apply the operation, and push the result back.
4. Repeat until the expression is fully scanned.

Example
 Postfix Expression: 5 3 + 8 *
Step-by-step Execution:
Final Answer = 64
Python Program
def evaluate_postfix(expression):
 stack = []
 for char in expression:
 if char.isdigit():
 stack.append(int(char))
 else:
 b = stack.pop()
 a = stack.pop()
 if char == '+':
 stack.append(a + b)
 elif char == '-':
 stack.append(a - b)
 elif char == '*':
 stack.append(a * b)
 elif char == '/':
 stack.append(a // b) # Integer division
 return stack[0]

expr = "53+8*"
print(evaluate_postfix(expr)) # Output: 64

Summary

• Stacks follow the LIFO principle and are used for function calls, undo-redo operations, expression evaluation, and more.
• Notations (Infix, Prefix, Postfix) determine the position of operators.
• Postfix expressions are evaluated efficiently using a stack.

Step Stack
5 [5]
3 [5, 3]
+ [8] (5+3)
8 [8, 8]
* [64] (8*8)

Introduction to Queue
A Queue is a linear data structure that follows the First In, First Out (FIFO) principle. This means the element added first is removed
first. It is similar to a line of people waiting for service, where the person who arrives first gets served first.
Real-Life Examples of Queue:

• People standing in a queue at a bank counter.
• Vehicles lined up at a toll plaza.
• Calls in a customer service center waiting to be answered.

Terminology:
• Front → The position from where elements are removed.
• Rear → The position where new elements are added.
• Enqueue → Operation to add an element at the rear.
• Dequeue → Operation to remove an element from the front.

Operations on Queue
1. Enqueue (Insertion)

• Adds an element to the rear of the queue.
• If the queue is full, an Overflow error occurs.

2. Dequeue (Deletion)
• Removes an element from the front of the queue.
• If the queue is empty, an Underflow error occurs.

3. Peek
• Retrieves the front element without removing it.

4. isEmpty
• Checks whether the queue is empty.

5. isFull
• Checks whether the queue is full (for a fixed-size queue).
•

Implementation of Queue Using Python
Queues can be implemented using:

1. Lists
2. collections.deque (Recommended for better efficiency)
3. queue.Queue module

1. Using List
class Queue:
 def __init__(self):
 self.queue = []

 def enqueue(self, item):
 self.queue.append(item)

 def dequeue(self):

 if not self.is_empty():
 return self.queue.pop(0) # Removes the front element
 return "Queue Underflow"

 def peek(self):
 if not self.is_empty():
 return self.queue[0] # Returns the front element
 return None

 def is_empty(self):
 return len(self.queue) == 0

Example Usage
q = Queue()
q.enqueue(10)
q.enqueue(20)
print(q.dequeue()) # Output: 10
print(q.peek()) # Output: 20
2. Using collections.deque (Recommended)
from collections import deque

queue = deque()
queue.append(10) # Enqueue
queue.append(20)
print(queue.popleft()) # Dequeue: 10
print(queue[0]) # Peek: 20

Introduction to Deque (Double-Ended Queue)
A Deque (pronounced as "deck") is a double-ended queue where elements can be inserted and removed from both ends.
Features of Deque:

• Can work as both a stack and a queue.
• Supports insertion and deletion at both front and rear.
• Used in palindrome checking, undo operations, and browser history.

Types of Deque:
1. Input-restricted deque → Insertions allowed at one end, deletions from both ends.
2. Output-restricted deque → Deletions allowed at one end, insertions from both ends.

Operations on Deque
1. InsertFront

• Inserts an element at the front.
2. InsertRear

• Inserts an element at the rear.
3. DeleteFront

• Removes an element from the front.
4. DeleteRear

• Removes an element from the rear.

5. PeekFront
• Retrieves the front element without removing it.

6. PeekRear
• Retrieves the rear element without removing it.

Implementation of Deque Using Python
Using collections.deque
from collections import deque

class Deque:
 def __init__(self):
 self.deque = deque()

 def insert_front(self, item):
 self.deque.appendleft(item)

 def insert_rear(self, item):
 self.deque.append(item)

 def delete_front(self):
 if not self.is_empty():
 return self.deque.popleft()
 return "Deque Underflow"

 def delete_rear(self):
 if not self.is_empty():
 return self.deque.pop()
 return "Deque Underflow"

 def peek_front(self):
 if not self.is_empty():
 return self.deque[0]
 return None

 def peek_rear(self):
 if not self.is_empty():
 return self.deque[-1]
 return None

 def is_empty(self):
 return len(self.deque) == 0

Example Usage
d = Deque()
d.insert_front(10)
d.insert_rear(20)

print(d.delete_front()) # Output: 10
print(d.delete_rear()) # Output: 20

Key Differences: Queue vs. Deque

Feature Queue Deque
Insertion Only at rear Both front and rear
Deletion Only from front Both front and rear
Flexibility Less flexible More flexible
Use Cases Print jobs, CPU scheduling Palindrome check, Undo operations

Example: Checking if a String is a Palindrome Using Deque
A palindrome is a string that reads the same forward and backward (e.g., "madam").
Algorithm:

1. Insert all characters into a deque.
2. Remove characters from both ends and compare them.
3. If they are all equal, the string is a palindrome.

Python Code:
from collections import deque

def is_palindrome(string):
 d = deque(string)

 while len(d) > 1:
 if d.popleft() != d.pop():
 return False
 return True

Example Usage
print(is_palindrome("madam")) # Output: True
print(is_palindrome("hello")) # Output: False

Summary

• Queues follow FIFO (First In, First Out) principle and are used in CPU scheduling, print jobs, and call centers.
• Deque is a double-ended queue allowing insertion and deletion from both ends.
• Deque is more flexible and can be used for stack-like or queue-like operations.
• Python provides efficient built-in methods using collections.deque for better performance.

 Subscribe Youtube Channel - Anvira Education - YouTube

 Join Course - Https://Anviraeducation.Com/

 Follow Us On Facebook - Https://Www.Facebook.Com/Anviraedu

 Follow Us On Instagram - https://www.instagram.com/anvira_edu/

 Sampat Sir Instagram - https://www.instagram.com/writersampat/

 Join Our Telegram Channel - https://t.me/Anviraeducation20

https://www.youtube.com/@AnviraEducation
https://www.facebook.com/Anviraedu
https://www.instagram.com/anvira_edu/

